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Abstract—Convective heat transfer in the hydrodynamically and thermally fully developed region of
rotating radial rectangular ducts is studied theoretically. A pair or pairs of vortices superimposed on the
main flow are introduced in the duct by the coriolis force. The fluid with a temperature T, is heated by the
duct wall with an isothermal temperature T, and the fluid bulk temperature may increase exponentially
after a sufficiently long heating length. Consequently, the three-dimensional energy equation can be reduced
to a two-dimensional eigenvalue problem and the axial conduction is also considered for a small Peclet
number. The present study covers parameters Pr = 0.7 and 7.0, Pe = oc, 5and | and Re Req = 0-2 x 10°
for rectangular channels with aspect ratios - = 0.2, 0.5, 1, 2 and 5. f Re/(f Re), and Nu/Nu,, indicating
the flow and heat transfer characteristics of the problem. are shown. The results are compared with the
existing data in the literature.

INTRODUCTION

HEAT TRANSFER in rotating ducts is encountered in
many engineering applications such as cooling in elec-
tric machinery, gas turbines and other rotating
systems. There are many studies on the flow and heat
transfer characteristics in rotating ducts, but only the
studies in rotating radial ducts are reviewed here.
Baura [1] obtained an approximate series solution in
a rotating pipe from a perturbation equation. The
friction factor was then computed from the series
solution. The results were valid only in the case of
laminar flow with a small angular velocity. The fric-
tion factor for the flow without heat transfer is exper-
imentally obtained in both the laminar and turbulent
flows by Trefethen [2].

Mori and Nakayama [3] studied the laminar con-
vective heat transfer in rotating radial circular ducts
by assuming velocity and temperature boundary lay-
ers along the pipe wall. The friction factor and the
Nusselt number were obtained in the region of large
Re Req. Subsequently, by using the same technique
the turbulent convective heat transfer in a rotating
radial pipe was analyzed by Mori ez al. [4].

Ito and Nanbu [5] studied extensively the friction
factor for fully developed flow in smooth wall straight
pipes of circular cross-section rotating at a constant
angular speed about an axis perpendicular to its own
for Reynolds numbers ranging from 20 to 60000.
Empirical equations of the friction factors for small
values of Req/Re were presented for both the laminar
and turbulent flows. Metzger and Stan [6] investigated
experimentally the effect of rotation on the entrance
region heat transfer inside straight, radially aligned
circular tubes. The average coolant passage Nusselt
numbers were determined for passage length-to-diam-

eter ratios of 6. 12, and 24 over ranges of radially
outward air flows and rotational speeds. Skiadaressis
and Spalding [7] predicted the flow and heat transfer
characteristics for turbulent steady flow in a rec-
tangular duct. Recently, heat transfer measurements
were carried out by Hwang and Soong [8] in a rotating
isothermal square duct for Reynolds numbers ranging
from 717 to 16000 and rotational Reynolds numbers
ranging from 20 to 320, and by Soong et al. [9] in
rectangular ducts for 7 = 0.2, 0.5. 1, 2 and 5. Recent
studies on rotating ducts in turbulent flow regimes
can be found in refs. [10-12].

This paper presents a theoretical analysis on the
forced laminar convection in the hydrodynamically
and thermally fully developed region of rotating iso-
thermal rectangular ducts with aspect ratios of 0.2.
0.5, 1,2 and 5. The temperature distribution may vary
exponentially in the axial direction and it becomes a
two-dimensional eigenvalue problem. For smail
values of Pe, the axial conduction in the thermatly
fully developed region cannot be neglected.

THEORETICAL ANALYSIS

Consider a forced laminar convection in an iso-
thermally heated rectangular channel rotating at a
constant speed about an axis normal to the channel
longitudinal direction. The physical configuration and
coordinate system are shown in Fig. 1. A secondary
fluid motion is introduced by the coriolis force gen-
erated by the main flow and the angular velocity. A
pair or pairs of vortices will be formed. By trans-
forming a convectional cylindrical coordinate (r, ¢.
z, 1) to the coordinate system (X. Y, Z. 1) mounted
on the cross-section of the duct
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NOMENCLATURE

A cross-sectional area Greek symbols
C constant, (CP./CZ)D2uW 2 thermal diffusivity of fluid
C; constants as shown in equation (12) » height to width aspect ratio, b 'a
D, hydraulic diameter, 44/S 0 dimensionless temperature difference,
f friction factor, £, /ip W* (T-T)/(T,~T.)
h heat transfer coefficient, §,./(T,~T.) i, A, eigenvalues
k thermal conductivity of fluid I viscosity
L Z-direction characteristic length v kinematic viscosity
Nu  Nusselt number, D, /k g vorticity
n dimensionless normal direction P density

coordinate T, wall shear stress
P,p pressure and dimensionless pressure V3 stream function
Pe  Peclet number, WD,/ Q angular speed.
Pr Prandtl number, v/
Gw wall heat flux Subscripts

r, ¢, z, t coordinate system
Re  Reynolds number, WD, /v
Req  rotational Reynolds number, QDZ2/v
S perimeter
T temperature
U. V, W velocity components in the X-, Y-,
Z-directions

dimensionless velocity components
in the x-, y-, z-directions
X, Y, Z,t transformed coordinate system
X, y, = dimensionless coordinate system.

u, r,w

b bulk quantity

c characteristic quantity

i 1,2.3,...

i,j  nodal point

w condition at wall

- in z-direction

0 condition at Z == 0 or without rotation.
Superscripts

average
k, m,n number of iteration.

r=2z

b = do+Qrt V/Z

=X

=1 M

and assuming a steady, incompressible and hydro-
dynamically fully developed flow, we have the con-
tinuity and momentum equations as follows:

continuity equation

U &V
-— _— = 2
axtar=? @

[YE—
e w
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Fi1G. 1. Physical configuration and coordinate system.

X-momentum
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* +V(cx- cy-> (3

The term 2WQ on the right hand side of equation (4)
is the coriolis force driving the flow in the negative Y-
direction. The term ZQ? in equation (3) is the cen-
trifugal force acting in the positive Z-direction and
will be balanced with the hydrostatic pressure dis-
tribution. The term 2V Q in equation (3) is also the
coriolis force from the product of the Y-direction
velocity and the angular velocity and is non-uniformly
distributed on the cross-section. It is noted that the
effect of density variation is not considered in the
momentum equations.
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Furthermore, if the channel wall is heated and kept
at a uniform wall temperature T.,. the fluid with an
entrance temperature T, will be heated, and after a
sufficiently long heating length, the temperature dis-
tribution of the fluid in the channel will be thermally
fully developed. The energy equation is

GET 0T T (8T o7 2Ty
wtatVazsaetaet i) ©

It is noted that the axial viscous terms in equations
(3)—(3) are neglected because of hydrodynamically
fully developed flow, but the axial conduction term in
the energy equation (6) is kept in the present thermally
fully developed flow. The reason for this formulation
will be explained later.

In order to obtain governing parameters in the
present problem, the following dimensionless trans-
formations for the independent and dependent vari-
ables are introduced

X=Dx, Y=Dy, Z=1L:

Vv ) —
U= Re I€('13(5‘>11. I = Re RLIQ<1‘)‘> oW = e

e/ [

P=PAZ)+Z'Q +pRe Reg (DL)[, "

where D, is the hydraulic diameter 44/S, L is the
heating length along the channel, Re = WD, /v is the
Reynolds number, Req = QDJ/v is the rotational
Reynolds number, W is the average axial velocity,
P{Z) is the hydrodynamically fully developed press-
ure distribution and $pZ*Q* is the hydrostatic press-
ure variation due to the centrifugal force. In the
present problem the case for L/D, >» 1 is considered.

By substituting the dimensionless transformations
(7) into equations (2)—(5), the continuity and momen-
tum equations become

‘u  Cr )
—~+—=0 (8)
cx  Cr
Cu Cu ¢ Su lu
130R0§)<u~—+L‘T>= — a0+ 1=+
cx éy Cx  Ox® Oy*
9
cr cr cP
Re Reg (LIT +v T) = -
Cx cv cy
&r ¢
2w+ =+ == (10)
X &
oW cw  Re
Re Reg (u — o — . 2L‘>
X ¢y Re
&w fw
=C+ =+ (1)
&x* &
where C = —(¢P./¢Z) DI/ uW is a constant which will

be determined by considering the global continuity

condition, i.¢. w = 1. The parameter Re Rey, 1s a com-
bination of the axial velocity W and the angular speed
Qindicating the effect of the coriolis force. The coriolis
forces acting in the y- and --directions are presented
by the terms — 2w in equation (10) and —2Reg; v in
equation (11). respectively. If the ratio Rey Re is
small, the effect of the coriolis force in the z-direction
may not be important. The case for small Re, Re is
considered in the present study.

In the thermally fully developed region of a long
duct with a uniform wall heat flux or an axial tem-
perature gradient. the fluid temperature changes lin-
early in the axial direction for both cases of pure
forced convection and combined free and forced con-
vection {13, 14]. In the present problem. the fluid
with an inlet temperature T, is heated in a rotating
isothermal channel with a constant temperature 7,.
The variation of fluid temperature in the duct may be
expressed as [13]

Ty C

= |

T—T.=(T,~

‘

xexp (=42 Pe DY ixvy (1)
where 7/, >/, > > 2.> A >0 are the cigen-
values and Pe = W'D_jv is the Peclet number. It can
be proved easily that comparing with the first term. the
terms withi = 2. 3,4, ... will be small for a sufficiently
large value of Z. Therefore, by neglecting the higher
terms and putting C,0, = 0 and 4, = /, the fluid tem-
perature can be rewritten as

T—T, =(T,~T,)exp(—22Z;Pe D)t(x. 1) (13}
and is called the thermally fully developed tempera-
ture. It is also found in the literature [13] that the
fluid temperature varies exponentially along the axial
direction in the thermally fully developed region for
the case of pure forced convection in a duct without
rotation. When the duct is rotating, the fluid flow is
two-dimensional in the hydrodynamically fully
developed region and is governed by equations (§)—
(11). It is believed that the exponentially varving tem-
perature (13) exists for a sufficiently large value of Z.
The definition (13) is more general than the statement
T=T,at Z= » used in a vertical channel [15] and
gives a chance to evaluate the Nusselt number by
using the value of / in the region. The condition

J ’ wldxdy = (14+7)7 /4
Ju

should be satisfied in the solution of ¢, where 7 is the
channel height and width aspect ratio. It 1s seen in
equation (12) that the fluid temperature will eventu-
ally reach the wall temperature as Z — «. but the
Nusselt number indicating the heat transfer charac-
teristic will approach asymptotically a definite value.
This will be discussed further in the following sections.

By substituting equations (7) and (13) into energy
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equation (6), the dimensionless energy equation is
written as

o co
Pr Re Reg u +L —;

. il 0 o0 8%
-\t Pl T ox? + ay?
where 4 is the eigenvalue which should be positive
to ensure monotonical decreasing of the exponential
value. The effect of the coriolis force on the tem-
perature distribution is indicated by the value of
Pr Re Rey. One important fact that must be pointed
out clearly in energy equation (14) is the effect of the
axial conduction term on the heat transfer charac-
teristic in the thermally fully developed region of a
channel with uniform wall temperature. This is fre-
quently overlooked in the literature. We can see that
the fourth term —420/Pe’ on the left-hand side of
equation (14) is derived from the axial conduction
term, which is not small for a small value of Peclet
number in comparison with Awf derived from the
axial convection term. This means that the expon-
ential term in equation (13) will not become smaller
with a second differentiation for a small value of Peclet
number. It is also noted that in the thermally fully
developed region, the energy equation reduces to a
two-dimensional eigenvalue problem.

In the computation of the present two-dimensional
problem, the vorticity transport equation is obtained
by a cross-differentiation of the x- and y-direction
momentum equations (9) and (10)

(14)

6' ¢ ow 5 é
ReRen(ua +be—v> 2— 6—+ 5
(15)
where
2 2
(v W W
§—-<EY +5v2) u_éy and v= =

The associated boundary conditions for equations
(11), (14) and (15) are:

=0 along the center line x =0

=0 on the channel wall

(16)

=4 =0yjin

noting that only symmetrical vortices will be obtained
with the present boundary conditions (15) set for half
of the channel.

FLOW AND HEAT TRANSFER
CHARACTERISTICS

The flow and heat transfer characteristics in a chan-
nel flow are indicated by the friction factor and the
Nusselt number. Following the conventional defi-
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nitions, the friction factor and the Nusselt number are
written as

T-W
/=
hD, GuDe
Nu= = =t (17)

where 7, is the mean wall shear stress and g, is the
mean wall heat flux. Both 7, and §, can be derived
from the averages of local derivatives, and the friction
factor and the Nusselt number become

ow
f' Re =2 (‘é;)n
a0
Nu = (a)w

On the other hand, 7,, and §, can also be derived from
the overall force and energy balances, respectively;
the results are

frRe=CJ2

i y A 4
Nu = 4_'+ (l—+;)—2 et J‘J‘O dx dy. (19)

The local derivatives of axial velocity and temperature
difference in equation (18) may introduce large trunc-
ation errors. Therefore the expressions in equation
(19) are used throughout the present study. It is also
noted that Nu = i/4 will be obtained readily for a
large Peclet number.

(18)

METHOD OF SOLUTION

The solution for unknown variables u, v, w, ¥, &,
and 8 in equations (11), (14) and (15) with unknown
constants C and A satisfying boundary conditions (16)
is a matter of considerable mathematical difficulty. A
numerical finite-difference scheme is employed in the
present paper to obtain the solution of equations (11),
(13) and (14). To ensure a convergent solution at
higher values of parameters Re Re, and Pr Re Reg a
power law [16] finite-difference approximation is used
for the formulation of equations. The numerical pro-
cedure is as follows.

(1) Assign initial values for unknowns u, v, w, ¥, &,
and 0, and for parameters Re Reg, Pr Re Req, Pe and
v, noting that the parameter Reg/Re in equation (11)
is set to zero in the present investigation.

(2) Give an initial guess for constant C and solve
equation (11) for w simultaneously by using a Gaus-
sian elimination method. The value of C is adjusted
by considering the relation

JJ. wdxdy = (1+7)°/4;.
A

(3) The relation for ¢ and ¢ in equation (15) is

(20)
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Table 1. Numerical experiment for y =

Re Req  Pr 7x13% 11x21 [5x29 21x4l
! Re 0 — 1431 14.26 14.24 14.23
10° — 1549 15.22 15.14 15.10
10°* — 2201 20.38 19.92 19.66
Nu io? 0.7 3499 3452 3436 3424
10° 7.0 7.051 6.436 6.229  6.093
10* 0.7 6.507  6.116 5.994 5.926
1* 7.0 16.16 11.81 10.52 9.968
FGrids (M+ D x (N+1).
solved for ¢ by a point iterative underrelaxation
scheme until the following criterion is fulfilled
Max |y, — g7
|'IJL/ lf//u _S lo,g (21)
Max [y},

where n is the nth number of iteration.

(4) The vorticity transport equation (15) is then
solved for & with the associated boundary vorticity
obtained from the stream function in step 3.

(5) Compute the values wand ¢.

(6) Repeat steps 2-5, until the following criterion is
satisfied

where & is the kth number of computation from steps
2-3.

(7) Calculate the friction factor from equation (19)
with the obtained value of C.

(8) With the obtained solution u, v, and w and initial
guessed values for 0 and A, energy equation (14) is
solved for 0. Considering the relation

fj whdxdy = (14+y)%4dy
A4

the eigenvalue is adjusted. This step is repeated until
the following criterion is satisfied
Max [0:"/ - 0:’71/7 l |
Max |07,

(23)

<10°° (24)
where m is the mth number of iteration.

(9) Compute the value for the Nusselt number by
using equation (19) with the obtained values of £ and
0.

Numerical experiments on the grid size for various
values of Re Req, Pr and channel aspect ratios were
carried out. Only a maximum difference of a few per-
cent in the values of f Re or Nu is acceptable for
different mesh sizes in each case. Table 1 depicts a
typical example of a numerical experiment for the case
of a square channel. The values of f Re and Nu for
grids 7x 13, 11 x 21, 15x29 and 21 x 41 are shown.
It is seen that the differences between the values of
/ Re and Nu obtained by using grids 15x29 and
21 x4l are all less than 2.2% except that for
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Re Req = 10* and Pr = 7.0. The uncertainty of the
numerical solution increases as the product Pr Re Re,,
increases. The uncertainty should be taken into
account in the use of Nu at higher values of Pr Re Rey,.
Similarly. numerical experiments for grids 7 x 13,
11x21, 15%29 and 21 x 41 were also carried out for
the other aspect ratios; detailed data for these exper-
iments will not be given here. However, the grid size of
15 x 29 was finally selected throughout the numerical
computation for the cases of y = 0.2, 0.5, 1.0, 2 and
J.

RESULTS AND DISCUSSION

Asshownin Fig. 1, a rectangular channel is rotating
at a constant speed about the X-axis. The fluid in the
core region is driven by the coriolis force acting in the
negative Y-direction. The fluid in the core region then
pushes the fluid near the side walls to the positive Y-
direction and a pair of counter-rotating eddies are
gencrated. In the present numerical study an
additional pair of eddies are observed near .Y = U and
Y = —h2athigh Re Reg regime, and changes in flow
and heat transfer characteristics are also found.

To understand the flow characteristics, the sce-
ondary flow pattern and axial velocity should be
examined closely. Ordinary single pair secondary flow
patterns have been reported in many previous inves-
tigations [1--3, 10] and will not be repeated here. Fig-
ures 2(a) and (b) show the streamlines and constant
axial velocities for a square duct at Re Re, = 25 500--
25350 and 34 730-34 735, respectively. The first num-
bers 25500 and 34730 are the parameters for the
streamlines and constant axial velocttics shown by
using the dashed lines and the second numbers are the
parameters for the solid lines. The numerical com-
putations were carried out from the first parameters
to the sccond ones. In Fig. 2(a). two pairs of secondary
flow eddies are observed at Re Reg = 25500. The con-
stant axial velocities near the center region of the
bottom wall are moved upwards by the secondary
eddies. When the parameter Re Re,, drops to 25 350.
the second pair of eddies disappears and the constant
axial velocities are seen to be parallel to the bottom
wall. When the numerical computation was done by
increasing Re Req from the zero value. ordinary single
pair secondary flow patterns are observed up to
Re Req = 34730. It is seen that the coriolis force 1s
acting in the negative Y-direction towards the bottom
wall and that the force along » = —0.25 15 larger
than that near y» = —0.5. This is a hydrodynamically
unstable situation from the viewpoint of fluid
mechanics. Therefore when Re Req is increased to
34735, the axial flow breaks down and a second pair
of eddies is generated. After the second pair of eddies
is generated the flow pattern will be maintained. even
when the parameter Re Reg drops to 25 500. This situ-
ation is already reported in Fig. 2(a). This type of
hysteresis behavior shows the existence of the dual
solution in parameters ranging from Re Reg = 25 500
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(o} ReRe 225500 -———
ReRegq = 25350

(b) R?RQQ:3L73O —_—==-

ReRe=34735

FiG. 2. Streamlines and constant axial velocities for a square
duct: (a) Re Req = 25500-25350; (b) Re Req = 34730~
34735,

to 34 730. In the dual solution region, the single or
double pairs of eddies depend mainly on the type of
flow pattern input initially in the computation. The
generation of the multiple pairs of eddies in rotating
channel flow can also be found in ref. {17].

Due to a strong downward secondary flow along
X = 0, the axial velocity is drastically distorted. The
axial velocity distribution along X = 0 is carefully
examined. In Fig. 3, the computation was done by
decreasing Re Rey from 35000 to 25350. From
Re Req = 35000 to 25 500, four vortices appear in the
square channel. The velocity distributions are pushed
from both sides by the main eddiesat —0.1 <y < 0.5
and by the second pair of eddiesat —0.5 <y < —0.2.

G. J. Hwang and T. C. Jex
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Y

FiG. 3. Axial velocity distributions along x = 0 for a square
duct.

The strength of the second pair of eddies gets weaker
and weaker as Re Req, decreases and approaches
25500, and therefore the axial velocity distributions
at —0.5 <y < —0.2 are less distorted, and the
location of the maximum axial velocity moves towards
y = —0.5. When Re Reg = 25350, the second pair of
eddies disappears, and the location of the maximum
axial velocity moves further towards y = —0.5.

To study the effect of aspect ratio y = b/a on the
secondary flow pattern and the axial velocity, Figs.
4(a) and (b) show the streamlines and constant axial
velocities for y = 0.5 at Re Req = 81 500 and 82000,

=02 (i)

{a) ReRe g = 81500

(b) ReRe g = 82000

FiG. 4. Streamlines and constant axial velocities for y = 0.5.
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respectively. Again. the change in the secondary flow
pattern is observed when the parameter Re Reg is
increased from 81500 to 82000. A hydrodynamically
unstable region due to the coriolis force is also found
near the bottom wall ; therefore the flow in this region
breaks down when Re Reg is increased. In the present
study, the parameter Re Reg is defined based on the
hydraulic diameter. The Re Re, marking the change
of the secondary flow pattern is 82000 for y = 0.5,
which is higher than 34735 for y = 1. For the other

found in the range of Re Reg under study. Further-
more, if the parameter Re Reg is defined based on the
height of the unstable region, the value of Re Re,
in Fig. 4(b) becomes 82000 (3/16) = 541 which is

1823

close to 34730-(1/4)>=543 for = =1. This
indicates an interesting phenomenon that the values
of Re Re,, defined based on the height of the unstable
region are almost the same for both the channel aspect
ratios 7 = | and 0.5.

In the thermally fully developed region of a rotating
isothermal duct. the Z-direction variation of tem-
perature is affected by the value of the Peclet number
through equation (13), and the dimensionless tem-
perature 6 in the cross-section also depends on the
Peclet number through equation (14). Figure S depicts
the effect of the Peclet number on the isotherms for
Re Re, = 50000 and 7 = 1 with Pr = 0.7 and 7.9. In
these cases. two pairs of eddies are shown in the cross-
section. By comparing Figs. 5(a) and (b). the dimen-

Iy

05 T

(Q) Pr=07, Pe:=oo

(b)Pr=C7, Pe=1

-05

Q05

(c) Pr=70,Pe =0

0
(d) Pr=70, Pe=1

05

FiG. 5. Isotherms for Re Req = 5 x 10*and 7 = 1.
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FiG. 6. f Re/(f Re)y vs Re Reg.

sionless temperature difference is reduced by decreas-
ing the value of the Peclet number. This observation
is physically reasonabile due to the axial diffusion term.
In Figs. 5(c) and (d), the dimensionless temperature
difference is also reduced by decreasing the value of
the Peclet number. Due to the larger convective heat
transfer caused by the higher value of the Prandtl
number, two pairs of eyes indicating the maximum
values of dimensionless temperature difference appear
in the cross-section. The locations of these eyes almost
coincide with the locations of the maximum values of
the stream function. It is seen from equation (18)
that the value of the Nusselt number depends on the
normal wall gradient of the dimensionless tem-
perature difference only. It is predicted from Figs.
5(a)~(d) that the value of the Nusselt number will
decrease with a decrease in the Peclet number.

In equation (11), the constant C is determined by
considering condition (20), then the product of the
friction factor and the Reynolds number can be easily
obtained by using equation (19). The curves for the
ratio f Re/(f Re), versus Re Rey for aspect ratios
y=0.2,0.5,1.0,2.0 and 5.0 are shown in Fig. 6, where
the subscript 0 indicates the condition for Re Re, = 0.
Generally speaking, the value of f Re/(f Re),
increases with an increase in the parameter Re Reg
and the curves with aspect ratios near the value 1.0
present higher values of f Re/(f Re), than those for
the other aspect ratios, for the same value of Re Reg.
In the present study, there is only a single pair of
eddies shown for the cases of aspect ratios 0.2, 2.0 and
5.0 at Re Req < 2x 10%, but there are two pairs of
eddies appearing at Re Reg > 82 000 for y =0.5 and at
25 500 < Re Req < 20000 for y = 1.0. It is also interest-
ing to see that in some of the ranges of Re Reg, one and
two pairs of eddies appear at the same value of Re Re,.

In equation (14), the eigenvalue 4 is determined
together with the parameters Pr, Re Reg, and Pe by
considering the condition (23), then the value of the
Nusselt number can be readily computed by using
equation (19). The values of Nu/Nu, versus Pr Re Re,,
are shown in Figs. 7(a) and (b) for the cases of
Pr = 0.7 and 7.0, respectively. It is seen that the value
of Nu/Nu,increases with an increase in Pr Re Reg and
Pe. The observation for the effect of Peclet number
confirms the prediction in Fig. 5. It is also found that
at Pr Re Re, = 10° the differences between the values
of Nu/Nu, for Pe = co and 1 are 11 and 17% fory = 1.0
and 2.0, respectively. The curves with aspect ratios
near the value 1.0 present higher values of Nu/
Nu, than the values for the other aspect ratios for
the same Pr Re Rey. By comparing the curves in Figs.
7(a) and (b), the curves Nu/Nu, are also well cor-
related by using the product of Pr and Re Rey, for
different Prandtl numbers, say Pr = 0.7 and 7.0. It is
expected that the curves for Pr = 0.7 will lie close to
the curves for Pr = 7.0.

Because of the lack of experimental data in the fully
developed region of an isothermal rectangular duct,
the present numerical curve is compared qualitatively
with the existing square duct data in the entrance
region [8, 9] and the data in circular ducts [3, 4, 6].
Figure 8(a) shows the values of Nu vs Pr Re Re, for
a square duct. It is seen from the fully developed flow
data that the present numerical curve for y = | almost
follows the same trend as the curves in refs. [3, 4]
regardless of the shape of the cross-section. Only the
experimental data with the centrifugal buoyancy effect
in the entrance region are available in the literature.
The data of a square duct for Re = 720 lie close to the
present numerical curve. Maybe due to the entrance
effect, the data with higher Reynolds numbers show
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higher values of the Nusselt number, and due to the
centrifugal buoyancy effect, the experimental data of
Pr=0.7 and Re =720 for large Re, or large
Pr Re Reg lie below the theoretical curve. Most of the

experimental data of Metzger and Stan [6] lie close to
the curve of Mori er al. [4] and below the analytical
curve of Mori and Nakayama [3], regardless of the
strong entrance effect in the data with small L;D, say
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FIG. 8. Comparison of numerical and experimental data: (a) square duct; (b) rectangular ducts.

L/D = 6. Furthermore, Fig. 8(b) shows the com-
parison for rectangular ducts. Only the experimental
data for Re < 1000, and Re/Reg > 6 obtained from
ref. [9] are plotted in this figure to avoid large entrance
and centrifugal buoyancy effects. The former will
increase the Nusselt number. On the contrary the
latter decreases the Nusselt number. Although there
are still entrance and centrifugal buovancy effects [9]
shown in the experimental data, in general the com-

parison between the numerical and experimental
data is acceptable. Besides, it is observed from the
numerical and experimental data that the Nusselt
number for y = | shows the highest value among the
data for y = 0.2-5.0.

CONCLUSIONS

(1) The present numerical scheme successfully
solved the governing equations with parameters 7,
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Re Reg,. Pr and Pe, a constant C, and an eigenvalue
+ for convective heat transfer in rotating isothermal
ducts. The eigenvalue £ is obtained together with the
dimensionless temperature ¢ from the energy
equation. The constant C and the eigenvalue 4 are
closely related to the flow and heat transfer charac-
teristics.

(2) In the paper, the definition of the thermally fully
developed region in the isothermal duct is based on
the validity of the temperature distribution

T--T,=(To—T,)exp(—+Z/Pe D)O(x. V)

along the longitudinal channel direction. This defi-
nition is more general than the statement, 7 = T, at
7 = x.used in an isothermal duct and gives a chance
to evaluate the Nusselt number by using the value of
7. in the region.

(3) fuis seen from Figs. 2 and 4 that the unstably
distributed coriolis force is acting in the negative Y-
direction toward the bottom wall. If the value of
Re Req, indicating the appearance of the four-vortex
pattern is evaluated based on the height of the
unstable region, the values are almost the same for
both aspect ratios 1 and 0.5.

(4) Generally speaking, the value of f Re/(f Re),
increases with the parameter Re Reg. The values with
aspect ratio near 1.0 present higher values of f Re/
(f Re), for the same Re Rey,.

(5) Itis seen that the value of Nu/Nu,increases with
the increases in Pr Re Reg, and Pe. The observation
for the effect of the Peclet number confirms the pre-
diction in Fig. 5. It is also found that at
Pr Re Req = 107 the differences between the values of
Nu/Nug, for Pe = xc and L are 11 and 17% fory = 1.0
and 2.0, respectively.
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CONVECTION THERMIQUE DANS DES CONDUITES ISOTHERMES TOURNANTES

Résumé—On étudie théoriquement la convection thermique dans la région hydrodynamiquement et ther-
miquement établie. Une paire ou des paires de tourbillons superposés a I'écoulement principal sont
introduits dans la conduite par la force de Coriolis. Le fluide 4 une température T, est chauffé par la paroi
a la température uniforme 7T, et la température globale du fluide croit exponenticliement aprés une
longueur de chauffage suffisamment longue. L’équation tridimensionnelle de 'énergie peut étre réduite a une
probléme bidimensionnel aux valeurs propres et la conduction axiale est aussi considérée pour un petit

nombre de Peclet. L’étude présente couvre les valeurs des paramétres Pr=0.7 et 7. Pe =

x,Setlet

Re Rey = 0-2 x 10° pour des canaux rectangulaires avec des rapports de forme 7 =0,2:0,5:1:2et 5. On
montre f Re/(f Re), et Nu/Nu, qui sont les caractéristiques de I'écoulement. Les résultats sont compares
aux données de la littérature.
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KONVEKTIVER WARMEUBERGANG IN ROTIERENDEN ISOTHERMEN KANALEN

Zusammenfassung—Der konvektive Wirmeiibergang bei hydrodynamisch und thermisch ausgebildeter
Stromung in einem rotierenden rechteckigen Kanal wird theoretisch untersucht. Durch die Coriolis-Kraft
werden der Hauptstrdomung ein oder mehrere Doppelwirbel Uberlagert. Das Fluid mit der Temperatur 7,
wird durch die isotherme Kanalwand (T,) geheizt; nach einer ausreichend langen Heizstrecke steigt
die Kerntemperatur des Fluids exponentiell an. Als Folge davon ist es méglich, die dreidimensionale
Energiegleichung auf ein zweidimensionales Eigenwertproblem zu reduzieren. ebenso darf fiir eine kleine
Peclet-Zah! axiale Wirmeleitung betrachtet werden. Die vorliegende Untersuchung deckt folgende Para-
meterbereiche ab: Pr=0,7 und 7,0; Pe = 0, 5 und 1, Re Req = 0 bis 2 x 10°; rechteckige Kanile mit
Seitenverhiltnissen ¥ = 0,2; 0.5; 1; 2 und 5. Die Ergebnisse fiir f Re/(f Re), und Nu/Nu,—typische
Kennzahlen fiir Strémung und Wirmetibergang—werden gezeigt. AbschlieBend erfolgt ein Vergleich mit
vorhandenen Daten aus der Literatur.

KOHBEKTHUBHBIA TETUJIONEPEHOC BO BPAIAIOMUXCA U3O0TEPMHUYECKHX
KAHAJIAX

AmmoTawus—TeOpeTHISCKH HCCNIENyeTCA KOHBEKTHBHBIH TEILIONEPEHOC B FHAPOAHHAMHYECKH H TEPMH-
YeCKH MOJIHOCTBIO Pa3BUTON 06JIaCTH BpAIUAIOLIMXCA PAJHAILHBIX KAHAJIOB NPAMOYTOJLHOIO CEYCHHA.
TMon AeiicTBHEM KOPHOJHCOBBIX CHJI HA OCHOBHOE TEYCHHE B KaHAJIC HRKJIAObLIBACTCA OXHA HIIA HECKO-
JbKO map Buxpeil. JKuakocrs, uMeromas Temnepatypy T,,, HarpeBaeTCs CTEHKOR KaHala ¢ TeMIepary-
poit T,, ¥ moCje AOCTATOYHO NPOJOIKHMTENBHOrO HAarpeBa CpelHeMaccoBas TEMIEpaTypa XHIKOCTH
MOXET IKCHOHEHUHANBHO pacTi. COOTBETCTBEHHO, TPEXMEPHOE YPaBHEHHE JHEPIHH MOXHO CBECTH K
OBYMEpHOH 3ajade Ha COOCTBEHHBIE 3HAYCHHA NaXe C YYETOM aKCHAJILHOW TEIUIONPOBOOHOCTH NpPH
Manbix 3HaveHHsx uxcia Ilexne. Hacrosiee uccienopaHve npoBomuTes Uis napamerpos Pr =07 u
7,0; Pe = o0, 5 1 1, a Takxe Re Rey = 0-2 x 10° uis KaHAJIOB NPAMOYTOABHOTO CEYEHMA € OTHOLIEHHEM
cropon y = 0,2;0,5; 1; 2 n 5 B 3aBucHMOCTH 0T f Re/(f Re), u Nu/Nu,. I1pencrabiieHl XapaKTepPHCTHKH
Ternoneperoca. ITosyueHHBie pe3ybTaThi CPAaBHUBAIOTCA C AMCIOLUHMHCH B JIMTEPATYPe AAKHBIMH.



