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Abstract--Convective heat transfer in the hydrodynamically and thermally fully developed region of 
rotating radial rectangular ducts is studied theoretically. A pair or pairs of vortices superimposed on the 
main flow are introduced in the duct by the coriolis force. The fluid with a temperature T0 is heated by the 
duct wall with an isothermal temperature 12, and the fluid bulk temperature may increase exponentially 
after a sufficiently tong heating length. Consequently, the three-dimensional energy equation can be reduced 
to a two-dimensional eigenvalue problem and the axial conduction is also considered for a small Peclet 
number. The present study covers parameters Pr = 0.7 and 7.0, Pe = oc, 5 and 1 and Re Re~ = 0-2 x 10 5 
for rectangular channels with aspect ratios ; = 0.2, 0.5, I, 2 and 5. f R e ( f  Re)o and Nu"Nuo, indicating 
the flow and heat transfer characteristics of the problem, are shown. The results are compared with the 

existing data in the literature. 

INTRODUCTION 

HEAT TRANSFER in rotating ducts is encountered in 
many engineering applications such as cooling in elec- 
tric machinery, gas turbines and other rotating 
systems. There are many studies on the flow and heat 
transfer characteristics in rotating ducts, but only the 
studies in rotating radial ducts are reviewed here. 
Baura [1] obtained an approximate series solution in 
a rotating pipe from a perturbation equation. The 
friction factor was then computed from the series 
solution. The results were valid only in the case of  
laminar flow with a small angular velocity. The fric- 
tion factor for the flow without heat transfer is exper- 
imentally obtained in both the laminar and turbulent 
flows by Trefethen [2]. 

Mori and Nakayama [3] studied the laminar con- 
vective heat transfer in rotating radial circular ducts 
by assuming velocity and temperature boundary lay- 
ers along the pipe wall. The friction factor and the 
Nusselt number were obtained in the region of large 
Re Ren. Subsequently, by using the same technique 
the turbulent convective heat transfer in a rotating 
radial pipe was analyzed by Mori et al. [4]. 

Ito and Nanbu [5] studied extensively the friction 
factor for fully developed flow in smooth wall straight 
pipes of  circular cross-section rotating at a constant 
angular speed about  an axis perpendicular to its own 
for Reynolds numbers ranging from 20 to 60000. 
Empirical equations of  the friction factors for small 
values of  Ren/Re were presented for both the laminar 
and turbulent flows. Metzger and Stan [6] investigated 
experimentally the effect of  rotation on the entrance 
region heat transfer inside straight, radially aligned 
circular tubes. The average coolant passage Nusselt 
numbers were determined for passage length-to-diam- 

eter ratios of 6. 12, and 24 over ranges of radially 
outward air flows and rotational speeds. Skiadaressis 
and Spalding [7] predicted the flow and heat transfer 
characteristics tbr turbulent steady flow in a rec- 
tangular duct. Recently, heat transfer measurements 
were carried out by Hwang and Soong [8] in a rotating 
isothermal square duct for Reynolds numbers ranging 
from 717 to 16000 and rotational Reynolds numbers 
ranging from 20 to 320, and by Soong et al. [9] in 
rectangular ducts for 7 = 0.2, 0.5. I, 2 and 5. Recent 
studies on rotating ducts in turbulent flow regimes 
can be found in refs. [10-12]. 

This paper presents a theoretical analysis on the 
forced laminar convection in the hydrodynamically 
and thermally fully developed region of rotating iso- 
thermal rectangular ducts with aspect ratios of  0.2. 
0.5, l, 2 and 5. The temperature distribution may vary 
exponentially in the axial direction and it becomes a 
two-dimensional eigenvalue problem. For small 
values of  Pe, the axial conduction in the thermally 
fully developed region cannot be neglected. 

THEORETICAL ANALYSIS 

Consider a forced laminar convection in an iso- 
thermally heated rectangular channel rotating at a 
constant speed about an axis normal to the channel 
longitudinal direction. The physical configuration and 
coordinate system are shown in Fig. 1. A secondary 
fluid motion is introduced by the coriolis force gen- 
erated by the main flow and the angular velocity. A 
pair or pairs of  vortices will be formed. By trans- 
forming a convectional cylindrical coordinate (r, oh, 
z, t) to the coordinate system (X. Y, Z, ~) mounted 
on the cross-section of  the duct 
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NOMENCLATURE 

cross-sectional area 
constant, (?P._/~Z)Df/p if/ 
constants as shown in equation (12) 
hydraulic diameter, 4A/S 
friction factor, f,/~p W "~ 
heat transfer coefficient, ~/(Tb-- TJ  
thermal conductivity of  fluid 
Z-direction characteristic length 
Nusselt number, hDJk 
dimensionless normal direction 
coordinate 

P ,p  pressure and dimensionless pressure 
Pe Peclet number, ffZDj~ 
Pr Prandtl number, v/~ 
qw wall heat flux 
r, qS, z, t coordinate system 
Re Reynolds number, if/D j r  
Ren rotational Reynolds number, f~D,/v 
S perimeter 
T temperature 
U, V, W velocity components in the X-, Y-, 

Z-directions 
u, r, w dimensionless velocity components 

in the x-, y-, z-directions 
X, Y, Z, T transformed coordinate system 
x ,y ,  z dimensionless coordinate system. 

Greek symbols 

P 
V 

P 
Tw 

0 
f~ 

2i 

thermal diffusivity of fluid 
height to width aspect ratio, b'a 
dimensionless temperature difference, 
( T -  Tw)/(T b-  T~) 
eigenvalues 
viscosity 
kinematic viscosity 
vorticity 
density 
wall shear stress 
stream function 
angular speed. 

Subscripts 
b bulk quantity 
c characteristic quantity 
i 1,2,3 . . . .  
i, j nodal point 
w condition at wall 
z in z-direction 
0 condition at Z = 0 or without rotation. 

Superscripts 
average 

k, m, n number of iteration. 

r = Z  

4, = 4,o+nT+ Y/Z 

z = X  

t = r  (1) 

and assuming a steady, incompressible and hydro- 
dynamically fully developed flow, we have the con- 
tinuity and momentum equations as follows : 

continuity equation 

gU 3V 
~ + ~ = 0 (2) 

bY- I Tw 
t 

y ~ MAIN FLOW 

To _ _  2 AXIS OF 
0 X " L .  ROTATION 

Fro. 1. Physical configuration and coordinate system. 

X-momentum 

PU flU 
u g  2 + v U ¢  . . . .  

Y-momentum 

u~V ~V 
u2 + v ~  . . . .  

1 ~P ['g2V gzV'~ 
p - 2 w n  

(3) 

(4) 

Z-momentum 

~W gW 1 ~P 
g~7 ~ + v ~ - 2 v n  = p ~z 

(~:~v ~w'~ 
+zn'-+VkT ~ + ~ j .  (5) 

The term 2 Wf] on the right hand side of equation (4) 
is the coriolis force driving the flow in the negative Y- 
direction. The term Zfl  2 in equation (5) is the cen- 
trifugal force acting in the positive Z-direction and 
will be balanced with the hydrostatic pressure dis- 
tribution. The term 2Vf~ in equation (5) is also the 
coriolis force from the product of the Y-direction 
velocity and the angular velocity and is non-uniformly 
distributed on the cross-section. It is noted that the 
effect of density variation is not considered in the 
momentum equations. 
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Furthermore, if the channel wall is heated and kept 
at a uniform wall temperature T~, the fluid with an 
entrance temperature To will be heated, and after a 
sufficiently long heating length, the temperature dis- 
tribution of the fu id  in the channel will be thermally 
fully developed. The energy equation is 

~T 8"T F:T [?:'-T ~ .2T  ~'-T' 
~ { a ' + v c ~  + #z ~ ~ - ' : + ~ + ~ , Z  

It is noted that the axial viscous terms in equations 
(3)-(5) are neglected because of hydrodynamically 
fully developed flow, but the axial conduction term in 
the energy equation (6) is kept in the present thermally 
fully developed flow. The reason for this formulation 
will be explained later. 

In order to obtain governing parameters in the 
present problem, the following dimensionless trans- 
formations for the independent and dependent vari- 
ables are introduced 

)t" = D~x, Y =  D¢v, Z =  L- 

1"= Re Re~2 v, 14"= ff'w 

P = P:(Z)+~pZ:f2:+pRe Ren p (7) 

where D~ is the hydraulic diameter 4A/S, L is the 
heating length along the channel, Re = ff/Djv is the 
Reynolds number,  Reo = ~D]/v is the rotational 
Reynolds number,  if" is the average axial velocity, 
P.(Z) is the hydrodynamically fully developed press- 
ure distribution and ~pZ2f2 "- is the hydrostatic press- 
ure variation due to the centrifugal force. In the 
present problem the case for L/D~ >> 1 is considered. 

By substituting the dimensionless transformations 
(7) into equations (2)-(5), the continuity and momen- 
tuna equations become 

(tl ~t" 
.-- + ~ = 0 (8) 
CX CI' 

8u ,Su~ ~P ~:u F-u 
ReRe~ u ~ - + t = - l =  - w - + ~ +  

c_v Cvl  cx  cx -  c.v- 

(9) 

&" &,) 8P 

82v ?-'r 
- 2 w + ~ +  , , (10) 

CX-  c v -  

( ~'w d;n' Rer, ) 
Re Rea u ~- + t, -z- -- " 2v 

cx c)' Re 

g:w ?2w 
= C + ~ - +  ,~-  (11) 

C X -  C v -  

where C = -(?P_./?Z)" D~/It 1,[7 is a constant which will 
be determined by considering the global continuity 

condition, i.e. )i" = 1. The parameter Re Reu is a com- 
bination of the axial velocity if" and the angular speed 
f2 indicating the effect of the coriolis force. The coriolis 
forces acting in the y- and --directions are presented 
by the terms - 2 w  in equation (10) and -2Re~ r in 
equation (11), respectively. If the ratio Re~Re is 
small, the effect of the coriolis force in the z-direction 
may not be important. The case for small Re~ Re is 
considered in the present stud). 

In the thermally- fully developed region of a long 
duct with a uniform wall heat flux or an axial tem- 
perature gradient, the fluid temperature changes lin- 
early in the axial direction for both cases of pure 
forced convection and combined free and forced con- 
vection [13, 14]. In the present problem, the fluid 
with an inlet temperature To is heated in a rotating 
isothermal channel with a constant temperature F,,. 
The variation of fluid temperature in the duct may be 
expressed as [13] 

T-T~ = ( T , - T , , )  ~ C, 

× e x p ( - , ; . , Z  PeD.)!Jiv.;) (12) 

,>,'here ,;.,, > ,;.,,. ~ > . - . >  ,.;.: > ,;,t > 0 are the eigen- 
values and Pe = l['O~,,v is the Peclet number. It can 
be proved easily that comparing with the first term. the 
terms ~ith i = 2, 3, 4 . . . .  will be small for a sufficiently 
large value of Z. Therefore, by neglecting the higher 
terms and putting C)Oj = 0 and ,;.) = ,;., the fluid tem- 
perature can be rewritten as 

T - T , ,  = ( T . - T ~ ) c x p ( - . ; . Z ' P e  Dj~(.v..v) (131 

and is called the thermally full.,,' developed tempera- 
lure. It is also found in the literature [13] that the 
fluid temperature varies exponentially along the axial 
direction in the thermally full) developed region for 
the case of pure forced convection in a duct without 
rotation. When the duct is rotating, the fluid flo~ is 
two-dimensional in the hydrodynamicall? fully 
developed region and is governed by equations (8) 
(11). It is believed that the exponentially varying tem- 
perature (13) exists for a sufficiently large value of Z. 
The definition (13) is more general than the statement 
T =  T~ at Z = ~ used in a vertical channel [15] and 
gives a chance to evaluate the Nusselt number by' 
using the value of 2 in the region. The condition 

f l  w O d x - d y = ( l + ' ' ) ' ' 4 ; ' .  

should be satisfied in the solution of 0, where ;' is the 
channel height and width aspect ratio. It is seen in 
equation (12) that the fluid temperature ~ill eventu- 
ally reach the wall temperature as Z--+ z ,  but the 
Nusselt number indicating the heat transfer charac- 
teristic will approach asymptotically a definite value. 
This will be discussed further in the following sections. 

By substituting equations (7) and (13) into energy. 
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equation (6), the dimensionless energy equation is 
written as 

( ,o) 
Pr Re Ren u ~ x + r  

( " ) ' 2 )  c20 ~ 0  ( 1 4 ) _ _  
-- /~w+-~e ~ O=gx--~+ Oy2 

where 2 is the eigenvalue which should be positive 
to ensure monotonical decreasing of the exponential 
value. The effect of the coriolis force on the tem- 
perature distribution is indicated by the value of 
Pr Re Ren. One important fact that must be pointed 
out clearly in energy equation (14) is the effect of the 
axial conduction term on the heat transfer charac- 
teristic in the thermally fully developed region of a 
channel with uniform wall temperature. This is fre- 
quently overlooked in the literature. We can see that 
the fourth term -220/Pe " on the left-hand side of 
equation (14) is derived from the axial conduction 
term, which is not small for a small value of  Peclet 
number in comparison with 2w0 derived from the 
axial convection term. This means that the expon- 
ential term in equation (13) will not become smaller 
with a second differentiation for a small value of Peclet 
number. It is also noted that in the thermally fully 
developed region, the energy equation reduces to a 
two-dimensional eigenvalue problem. 

In the computation of the present two-dimensional 
problem, the vorticity transport equation is obtained 
by a cross-differentiation of the x- and y-direction 
momentum equations (9) and (10) 

Re Ren U~x +V fff, = - 2  =--cx + ~x 2 + ~y2 

(15) 

where 

k &v- (g2~, ~. 2q/) fffY c~ c~q/ ~x '  ¢ =  + g T :  ' u and v 

The associated boundary conditions for equations 
(11), (14) and (15) are: 

&ll' &0 
c3x &v ~ = ~ = 0 along thecenter line x 0 

w = 0 = q/= &k/an = 0 on the channel wall 

(16) 

noting that only symmetrical vortices will be obtained 
with the present boundary conditions (I 5) set for half 
of the channel. 

FLOW A N D  HEAT TRANSFER 
CHARACTERISTICS 

The flow and heat transfer characteristics in a chan- 
nel flow are indicated by the friction factor and the 
Nusselt number. Following the conventional deft- 

nitions, the friction factor and the Nusselt number are 
written as 

fw 
f =  ~pW2 

hOc ~,Oo 
Nu = T = (Tb -- T.)--k (17) 

where fw is the mean wall shear stress and qw is the 
mean wall heat flux. Both f .  and q. can be derived 
from the averages of local derivatives, and the friction 
factor and the Nusselt number become 

f .  Re = \-gnn/w 

Uu= ~ n "  (18) 

On the other hand, Q and ~]. can also be derived from 
the overall force and energy balances, respectively; 
the results are 

f " Re = C/2 

;. "t ; O f f  Nu = ~ +  0 dx dr. (19) 
(1+7)-' Pee ~ 

The local derivatives of axial velocity and temperature 
difference in equation (18) may introduce large trunc- 
ation errors. Therefore the expressions in equation 
(19) are used throughout the present study. It is also 
noted that Nu = 2t4 will be obtained readily for a 
large Peclet number. 

M E T H O D  OF SOLUTION 

The solution for unknown variables u, v, w, ~, ~, 
and 0 in equations (11), (14) and (15) with unknown 
constants C and 2 satisfying boundary conditions (16) 
is a matter of considerable mathematical difficulty. A 
numerical finite-difference scheme is employed in the 
present paper to obtain the solution of equations (11), 
(13) and (14). To ensure a convergent solution at 
higher values of parameters Re Ren and Pr Re Ren a 
power law [16] finite-difference approximation is used 
for the formulation of  equations. The numerical pro- 
cedure is as follows. 

(1) Assign initial values for unknowns u, v, w, ~O, ~, 
and 0, and for parameters Re Ren, Pr Re Ren, Pe and 
7, noting that the parameter Ren/Re in equation (11) 
is set to zero in the present investigation. 

(2) Give an initial guess for constant C and solve 
equation (t 1) for w simultaneously by using a Gaus- 
sian elimination method. The value of C is adjusted 
by considering the relation 

f f a w d x d y ( l "  = +7)-i47 . (20) 

(3) The relation for ~ and ~, in equation (15) is 
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Table 1. Numerical experiment for 7 = 1 

ReRen Pr 7xt3+ l lx21  15x29 21x41 

f Re 0 - -  1 4 . 3 I  14.26 14.24 14.23 
I0 ~ - -  t5.49 15.22 15.14 15.10 
10 a - -  22 .01  20.38 19.92 19.66 

.Vu 10 ~ 0.7 3 . 4 9 9  3 . 4 5 2  3.436 3.424 
10 ~ 7.0 7 .051  6.436 6.229 6.093 
10 ~ 0.7 6.507 6.116 5.994 5.926 
10 ~ 7.0 16 .16  11.81 10.52 9.968 

+Grids (M+ 13 x (N+ 1). 

Re Ren = 10 a and Pr = 7.0. The uncertainty of  the 
numerical solution increases as the product Pr Re Re~ 
increases. The uncertainty should be taken into 
account in the use of  Nu at higher values of Pr Re Ren. 
Similarly. numerical experiments for grids 7 x 13, 
11 x 21, 15 × 29 and 21 x41 were also carried out for 
the other aspect ratios; detailed data for these exper- 
iments will not be given here. However, the grid size of 
15 x 29 was finally selected throughout the numerical 
computat ion for the cases of  7 = 0.2, 0.5, 1.0, 2 and 
5. 

solved for ~# by a point iterative underrelaxation 
scheme until the following criterion is fulfilled 

Max ~ ~- ' I t lJ, . ,-~.j  I 
~< 10 5 (21) 

Max I g'~'.,t 

where n is the nth number of  iteration. 
I41 The vorticity transport equation (15) is then 

sol~ed for ,~ with the associated boundary vorticity 
obtained from the stream function in step 3. 

(5) Compute the values u and r. 
16) Repeat steps 2-5. until the following criterion is 

satisfied 

Max ~ ~i '1 I l l ' i  ] - -  I t ' ,  J 

Max [w).jl ~< 10 -5 (22) 

where k is the kth number of  computat ion from steps 
2 - - 5 .  

(7) Calculate the friction factor from equation (19) 
with the obtained value of  C. 

(8) With the obtained solution u, v, and w and initial 
guessed values for 0 and 2, energy equation (14) is 
solved for 0. Considering the relation 

ffwOd.vdy=(l+y)2/4",, (23) 

the eigenvalue is adjusted. This step is repeated until 
the following criterion is satisfied 

Max [0~-0~' ,  t[ 
~< 10 s (24) 

Max 10~,1 

where m is the ruth number of  iteration. 
(93 Compute  the value for the Nusselt number by 

using equation (19) with the obtained values of,:. and 
0. 

Numerical experiments on the grid size for various 
values of  Re Ren, Pr and channel aspect ratios were 
carried out. Only a maximum difference of  a few per- 
cent in the values of  f Re or Nu is acceptable for 
different mesh sizes in each case. Table 1 depicts a 
typical example of  a numerical experiment for the case 
of a square channel. The values of  f Re and Nu for 
grids 7 x 1 3 ,  l l x 2 1 ,  15x29  and 21x41  are shown. 
It is seen that the differences between the values of  
.f Re and Nu obtained by using grids 15 x29  and 
21 x41 are all less than 2.2% except that for 

RESULTS AND DISCUSSION 

As shown in Fig. l, a rectangular channel is rotating 
at a constant speed about the X-axis. The fluid in the 
core region is driven by the coriolis force acting in the 
negative Y-direction. The fluid in the core region then 
pushes the fluid near the side walls to the positive Y- 
direction and a pair of  counter-rotating eddies are 
generated. In the present numerical studv an 
additional pair of  eddies are observed near .V = 0 and 
Y = - t7 '2  at high Re R% regime, anti changes it, flow 
and heat transfer characteristics arc also found. 

To understand the flow characteristics, the sec- 
ondary flow pattern and axial velocity should be 
examined closely. Ordinary single pair secondary flow 
patterns have been reported in many previous inves- 
tigations [1-3, 10] and will not be repeated here. Fig- 
ures 2(a) and (b) show the streamlines and constant 
axial velocities for a square duct at Re Re'~ = 25 500- 
25 350 and 34 730-34 735, respectively. The first num- 
bers 25 500 and 34730 are the parameters for the 
streamlines and constant axial ,,elocities shown by' 
using the dashed lines and the second numbers are the 
parameters for the solid lines. The numerical com- 
putations were carried out from the first parameters 
to the second ones. In Fig. 2(a). two pairs of secondary' 
flow eddies are observed at Re Ren = 25 500. The con- 
stant axial velocities near the center region of the 
bottom wall are moved upwards by the secondary 
eddies. When the parameter Re Ren drops to 25 350. 
the second pair of  eddies disappears and the constant 
axial velocities are seen to be parallel to the bottom 
wall. When the numerical computat ion was done by 
increasing Re Ren from the zero value, ordinary single 
pair secondary flow patterns are observed up to 
Re Ren = 34 730. It is seen that the coriolis force is 
acting in the negative Y-direction towards the bottom 
wall and that the force along y =  - 0 . 2 5  is larger 
than that near 3" = - 0 . 5 .  This is a hydrodynamically 
unstable situation from the viewpoint of  fluid 
mechanics. Therefore when Re Re~ is increased to 
34 735, the axial flow breaks down and a second pair 
of  eddies is generated. After the second pair of  eddies 
is generated the flow pattern will be maintained, even 
when the parameter Re Ren drops to 25 500. This situ- 
ation is already reported in Fig. 2(a). This type of  
hysteresis behavior shows the existence of the dual 
solution in parameters ranging from Re Reo . . . .  500 
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1.6 

0.5 

FIG. 2. Streamlines and constant axial velocities for a square 
duct : (a) Re Ren = 25 500-25 350; (b) Re Re• = 34 730- 

34 735. 

to 34 730. In the dual solution region, the single or 
double pairs of  eddies depend mainly on the type of  
flow pattern input initially in the computation.  The 
generation of  the multiple pairs of  eddies in rotating 
channel flow can also be found in ref. [17]. 

Due to a strong downward secondary flow along 
X = 0, the axial velocity is drastically distorted. The 
axial velocity distribution along X = 0 is carefully 
examined. In Fig. 3, the computat ion was done by 
decreasing Re Ren from 35000 to 25350. From 
Re Ren = 35 000 to 25 500, four vortices appear in the 
square channel. The velocity distributions are pushed 
from both sides by the main eddies at - 0 .  ! < y < 0.5 
and by the second pair of  eddies at - 0 . 5  < y < - 0 . 2 .  

1.8 

1.2 

W 

0.6 

%_ 

x=0 

0.t I ] I 
- 0.5 0 0.5 

Y 

FIG. 3. Axial velocity distributions along x = 0 for a square 
duct. 

The strength of  the second pair of  eddies gets weaker 
and weaker as Re Re~ decreases and approaches 
25 500, and therefore the axial velocity distributions 
at - 0 . 5  < 3 , < - 0 . 2  are less distorted, and the 
location of  the maximum axial velocity moves towards 
y = - 0 . 5 .  When Re Ren = 25 350, the second pair of  
eddies disappears, and the location of  the maximum 
axial velocity moves further towards y = - 0 . 5 .  

To study the effect of  aspect ratio 7 = b/a on the 
secondary flow pattern and the axial velocity, Figs. 
4(a) and (b) show the streamlines and constant axial 
velocities for 7 = 0.5 at Re ReQ = 81 500 and 82000, 

I i 

• . - . 

(Q) ReRt'12 =81500 

. 5 . 8  ~ 0.St, 

0.g0 

(b) ReRe £ = 821~0 

FiG. 4. Streamlines and constant axial velocities for 7 = 0.5. 
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respectively. Again, the change in the secondary flow 
pattern is observed when the parameter Re Ren is 
increased from 81 500 to 82 000. A hydrodynamically 
unstable region due to the coriolis force is also found 
near the bottom wall : therefore the flow in this region 
breaks down when Re Ren is increased. In the present 
study, the parameter Re Reo is defined based on the 
hydraulic diameter. The Re Ren marking the change 
of  the secondary flow pattern is 82000 for 7 = 0.5, 
~vhich is higher than 34 735 for 7 = 1. For  the other 
aspect ratios 7 = 0.2, 2.0 and 5.0, the change is not 
found in the range of  Re Ren under study. Further- 
more, if the parameter Re Re~ is defined based on the 
height of the unstable region, the value of  Re Re~, 
in Fig. 4(b) becomes 82000" (3/16)3= 541 which is 

close to 34 730-(1/4) 3 = 5 4 3  for ; ' =  1. This 
indicates an interesting phenomenon that the values 
of  Re ReQ defined based on the height of  the unstable 
region are almost the same for both the channel aspect 
ratios 7 = 1 and 0.5. 

In the thermally fully developed region of  a rotating 
isothermal duct, the Z-direction variation of tem- 
perature is affected by the value of the Peclet number 
through equation (13), and the dimensionless tem- 
perature 0 in the cross-section also depends on the 
Peclet number through equation (14). Figure 5 depicts 
the effect of  the Peclet number on the isotherms for 
Re Re~a = 50000 and 7 --- 1 with Pr = 0.7 and 7.0. In 
these cases, two pairs of  eddies are shown in the cross- 
section. By comparing Figs. 5(a) and (b), the dimen- 

°°°',8 

5x _ x 

-i i 

o Q "7 

(c) Pr ='Z.0, Pe =co (d] Pr ='Z0, Pe:l 
FIG. 5. Isotherms for Re Re~ = 5 x 10  4 and 7 = I. 
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FIG. 6. f Re/(f Re)o vs Re Re~a. 

sionless temperature difference is reduced by decreas- 
ing the value of the Peclet number. This observation 
is physically reasonable due to the axial diffusion term. 
In Figs. 5(c) and (d), the dimensionless temperature 
difference is also reduced by decreasing the value of 
the Peclet number. Due to the larger convective heat 
transfer caused by the higher value of the Prandtl 
number, two pairs of eyes indicating the maximum 
values of dimensionless temperature difference appear 
in the cross-section. The locations of these eyes almost 
coincide with the locations of the maximum values of 
the stream function. It is seen from equation (18) 
that the value of the Nusselt number depends on the 
normal wall gradient of the dimensionless tem- 
perature difference only. It is predicted from Figs. 
5(a)-(d) that the value of the Nusselt number will 
decrease with a decrease in the Peclet number. 

In equation (1 I), the constant C is determined by 
considering condition (20), then the product of the 
friction factor and the Reynolds number can be easily 
obtained by using equation (19). The curves for the 
ratio f Re/(f  Re)o versus Re Ren for aspect ratios 
7 = 0.2, 0.5, 1.0, 2.0 and 5.0 are shown in Fig. 6, where 
the subscript 0 indicates the condition for Re Ren = O. 
Generally speaking, the value of f Re/(fRe)o 
increases with an increase in the parameter Re Reo 
and the curves with aspect ratios near the value 1.0 
present higher values o f f  Re/(f  Re)o than those for 
the other aspect ratios, for the same value of Re Ren. 
In the present study, there is only a single pair of 
eddies shown for the cases of aspect ratios 0.2, 2.0 and 
5.0 at Re Ren < 2 x 105, but there are two pairs of 
eddies appearing at Re Ren >i 82 000 for 7 = 0.5 and at 
25 500 ~< Re Ren < 20 000 for 7 = 1.0. It is also interest- 
ing to see that in some of the ranges of Re Ren, one and 
two pairs of eddies appear at the same value of Re Ren. 

In equation (14), the eigenvalue ,;. is determined 
together with the parameters Pr, Re Ren, and Pe by 
considering the condition (23), then the value of the 
Nusselt number can be readily computed by using 
equation (19). The values of Nu/ Nuo versus Pr Re Ren 
are shown in Figs. 7(a) and (b) for the cases of 
Pr = 0.7 and 7.0, respectively. It is seen that the value 
of Nu/Nuo increases with an increase in Pr Re Ren and 
Pc. The observation for the effect of Peclet number 
confirms the prediction in Fig. 5. It is also found that 
at Pr Re Ren = 105 the differences between the values 
ofNu/NuoforPe = ov and I are 11 and 17% for7 = 1.0 
and 2.0, respectively. The curves with aspect ratios 
near the value 1.0 present higher values of Nu/ 
Nuo than the values for the other aspect ratios for 
the same Pr Re Ren. By comparing the curves in Figs. 
7(a) and (b), the curves Nu/Nuo are also well cor- 
related by using the product of Pr and Re Ren for 
different Prandtl numbers, say Pr = 0.7 and 7.0. It is 
expected that the curves for Pr = 0.7 will lie close to 
the curves for Pr = 7.0. 

Because of the lack of experimental data in the fully 
developed region of an isothermal rectangular duct, 
the present numerical curve is compared qualitatively 
with the existing square duct data in the entrance 
region [8, 9] and the data in circular ducts [3, 4, 6]. 
Figure 8(a) shows the values of Nu vs Pr Re Ren for 
a square duct. It is seen from the fully developed flow 
data that the present numerical curve for 7 = 1 almost 
follows the same trend as the curves in refs. [3, 4] 
regardless of the shape of the cross-section. Only the 
experimental data with the centrifugal buoyancy effect 
in the entrance region are available in the literature. 
The data of a square duct for Re = 720 lie close to the 
present numerical curve. Maybe due to the entrance 
effect, the data with higher Reynolds numbers show 
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FIG. 7. Nu/Nuo vs Pr Re Ren : (a) Pr = 0.7 : (b) Pr = 7.0. 

higher values of  the Nusselt  number ,  and  due to the 
centrifugal buoyancy  effect, the experimental  data  of  
P r = 0 . 7  and R e = 7 2 0  for large Ren or large 
Pr Re Ren tie below the theoretical  curve. Most  of  the 

exper imental  da ta  of  Metzger  and Stan [6] lie close to 
the curve of  Mori  et al. [4] and below the analytical 
curve of  Mori  and  N a k a y a m a  [3], regardless of  the 
s trong ent rance  effect in the data  with small L/D,  say 
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FIG. 8. Comparison of numerical and experimental data : (a) square duct ; (b) rectangular ducts. 

L/D = 6. Furthermore,  Fig. 8(b) shows the com- 
parison for rectangular ducts. Only the experimental 
data for Re << 1000, and Re/Ren > 6 obtained from 
ref. [9] are plotted in this figure to avoid large entrance 
and centrifugal buoyancy effects. The former will 
increase the Nusselt number. On the contrary the 
latter decreases the Nusselt number. Although there 
are still entrance and centrifugal buoyancy effects [9] 
shown in the experimental data, in general the cam- 

parison between the numerical and experimental 
data is acceptable. Besides, it is observed from the 
numerical and experimental data that the Nusselt 
number for 7 = l shows the highest value among the 
data for 7 = 0.2-5.0. 

CONCLUSIONS 

(l)  The present numerical scheme successfully 
solved the governing equations with parameters 7, 
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Re R%. Pr and  Pe, a c o n s t a n t  C, and  an  e igenvalue  
). for convec t ive  heat  t ransfer  in ro ta t ing  i so the rmal  

ducts .  The  e igenvalue  ,:. is ob t a ined  t oge the r  with the  

d imens ion less  t e m p e r a t u r e  0 f rom the energy  

equa t ion .  The  c o n s t a n t  C and  the  e igenva lue  ). are  
closely re la ted to the  flow and  heat  t r ans fe r  charac-  
teristics. 

(2) In the paper ,  the  def ini t ion o f  the  thermal ly  fully 
deve loped  region  in the  i so thermal  duc t  is based  on  
the validity o f  the t empe ra tu r e  d i s t r ibu t ion  

T- -  T~ = ( T 0 -  T~) exp ( - ) . Z / P e  D~)O(.v,y) 

a long  the longi tud ina l  channe l  d i rec t ion .  This  deli- 
ni t ion is m o r e  general  than  the s t a t emen t ,  T = T~ at 
Z = zc_, used in an i so the rmal  duct  and  gives a chance  

to evalua te  the Nusse l t  n u m b e r  by using the  value o f  
,;, in the region.  

(3) It is seen f rom Figs.  2 and 4 tha t  the  uns tab ly  
d i s t r ibu ted  coriol is  force is act ing in the  negat ive Y- 

d i rec t ion  t o w a r d  the  b o t t o m  wall. I f  the  value o f  
Re Re~ ind ica t ing  the a p p e a r a n c e  o f  the  four -vor tex  
pa t t e rn  is eva lua ted  based  on the he ight  o f  the 
unstable  region,  the values are a lmos t  the same for 

both  aspect  ra t ios  1 and  0.5. 
(4) Genera l ly  speaking ,  the value o f  f R e / ( /  Re)o 

increases with the p a r a m e t e r  Re Ren. The  values wi th  
aspect  ra t io  near  1.0 present  h igher  values  o f  f Re/ 

I f  Re)~, for the same Re Ren. 
(5) It is seen tha t  the value o f  Nu/'Nuo increases  wi th  

the increases  in Pr Re Ren and  Pc. The  obse rva t i on  
l\)r the effect o f  the Peclet n u m b e r  con f i rms  the pre-  
dic t ion in Fig. 5. It is also f o u n d  that  at 
Pr Re Reo = l0 s the differences be tween  the values o f  

N u / N u o f o r P e  = zc and  I are 11 and  17% f o r ; ' =  1.0 
and  2.0, respectively.  
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CONVECTION THERMIQUE DANS DES CONDUITES ISOTHERMES TOURNANTES 

R6sumg--On 6tudie tbboriquement la convection thermique dans la r6gion hydrodynamiquement et ther- 
miquement 6tablie. Une paire ou des paires de tourbillons superposbs ~ l'6coulement principal sont 
introduits dans la conduite par la force de Coriolis. Le fluide/t une temp6rature To est chauff6 par la paroi 
~i la temp6rature uniforme Tw e t l a  temp6rature globale du fluide croit exponentiellement aprd.s une 
longueur de chauffage suffisamment longue. L'6quation tridimensionnelle de l'+nergie peat ~tre rbduite a. une 
probl6me bidimensionnel aux valeurs propres et la conduction axiale est aussi consid+r6e pour un petit 
hombre de Peclet. L'~tude pr6sente couvre les valeurs des param6tres Pr = 0,7 et 7, Pe = ~_, 5 et I e t  
Re Ren = 0-2 x 105 pour des canaux rectangulaires avec des rapports de forme 7 = 0,2 ; 0,5 : 1 : 2 et 5. On 
montre f Re"(f Re)f~ et Nu/Nuo qui sont les caraet6ristiques de l '&oulement. Les r6sultats sont compares 

aux donn6es de la litt6rature. 
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K O N V E K T I V E R  W A R M E Q B E R G A N G  IN R O T I E R E N D E N  I S O T H E R M E N  KAN,~LEN 

Zusammenfassung--Der  konvektive W/irmeiibergang bei hydrodynamisch und thermisch ausgebildeter 
Str6mung in einem rotierenden rechteckigen Kanal  wird theoretisch untersucht.  Durch die Coriolis-Kraft 
werden der Haupts t r6mung ein oder mehrere Doppelwirbel iiberlagert. Das Fluid mit der Temperatur  To 
wird durch die isotherme Kanalwand (T~) geheizt; nach einer ausreichend langen Heizstrecke steigt 
die Kerntemperatur  des Fluids exponentiell an. Als Folge davon ist es m6glich, die dreidimensionale 
Energiegleichung auf  ein zweidimensionales Eigenwertproblem zu reduzieren, ebenso darf  fiJr eine kleine 
Peclet-Zahl axiale W~irmeleitung betrachtet werden. Die vorliegende Untersuchung deckt folgende Para- 
meterbereiche ab:  Pr = 0,7 und 7,0; Pe = o~, 5 und I, Re Reo = 0 bis 2 x 10~; rechteckige Kan~ile mit 
Seitenverh/iltnissen " /= 0,2 ; 0,5 ; 1 ; 2 und 5. Die Ergebnisse f/Jr f R e / ( f  Re)o und Nu/Nuo--typische 
Kennzahlen fiir Str6mung und W~irme~bergang--werden gezeigt. Abschliel3end erfolgt ein Vergleich mit 

vorhandenen Daten aus  der Literatur. 

KOHBEKTHBHbII~I TEI'LIIOI'IEPEHOC BO BPAIHAK)IHHXCH H 3 O T E P M H q E C K H X  
KAHATIAX 

AmmTamm--TeopeTH~ecK~ xcc~e~lyeTc~ KOHBeXTHBHHI~ TenJIonepeHoc B rH~pOm~HaMHqecKH H TepMH- 

q e c ~ x  nOnHOCTS~O pa3BaTOfi o6~ac~a s p a m a m a m x c a  pa~ma.~max ~aHa.~oB np~Moyrom, noro  ceqeH~. 
I ' [o~  ~efiCTBHeM XOpHO~IHCOBHX CHJI Ha OCHOBHOC Teqe~He B KaHa~e n a r ~ a ~ B a e T c a  o l m a  ~ m  Hec~6- 
aSKO n a p  Baxpe~. )K~u~xocrs, aMe~oma~ re~mepaTypy T o, narpesaeTc~ c r e a x o / ~  ~ a H a ~ a  c reMnepaTy- 
poi~ T, ,  ~t nocae 21oeraTOqHO npo~lommrre~,Horo HarpeBa cpem~eMaccoBa~ resmepaxypa  x r taxoera  
Mozgq" 3KClIOHCHIIIIa21bHO pacra.  COOTBC'rc'rBeHHO, TpCxMCpHO¢ ypaBHeHHe 3HCprHH MO~VdlO ¢I~I 'H I~ 
~lByMepHOfi 3a~aq¢ Ha CO6CTBCHHblC 3HatlCHHg ~axe  c y~e'roM agCHa.rlbHOfi TCILrlorlpOBO~lOC'rH npH 
MaSIblX 3Ha~ICHHRX ~IHC.rla I'Ic~rte. Hacrorattee Hcc.rlCZ[OBaHHC rlpOBO,IIHTC~I 2Lrl~l napaMerpoB Pr = 0,7 a 
7,0; Pe = o~, 5 a 1, a Tag:re Re Re n = 0-2 x l0 s ~ns  t<aHanoB npaMoyroa~,Horo ceqenHa e OTHOtUeHHeM 
eropoH ~, = 0,2; 0,5; 1; 2 r~ 5 B 3aSHCHMOCrH o T f R e / ( f R e ) o  a Nu /Nu  o . 1-1peaerasaeH~ x a p a r r e p a e r a g a  

Ten~onepeHoea. I'[oay~eHn~e pc3y~bTaTH ¢paBHHBamTCa C HMemtuao~Hca B anxepaxype aamnaxm.  


